Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.978
Filtrar
1.
Nat Commun ; 15(1): 2749, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553461

RESUMO

Virus-specific T cells (VST) from partially-HLA matched donors have been effective for treatment of refractory viral infections in immunocompromised patients in prior studies with a good safety profile, but rare adverse events have been described. Here we describe a unique and severe adverse event of VST therapy in an infant with severe combined immunodeficiency, who receives, as part of a clinical trial (NCT03475212), third party VSTs for treating cytomegalovirus viremia following bone marrow transplantation. At one-month post-VST infusion, rejection of graft and reversal of chimerism is observed, as is an expansion of T cells exclusively from the VST donor. Single-cell gene expression and T cell receptor profiling demonstrate a narrow repertoire of predominantly activated CD4+ T cells in the recipient at the time of rejection, with the repertoire overlapping more with that of peripheral blood from VST donor than the infused VST product. This case thus demonstrates a rare but serious side effect of VST therapy.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Viroses , Lactente , Humanos , Transplante de Medula Óssea/efeitos adversos , Medula Óssea , Imunoterapia Adotiva , Linfócitos T/transplante , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
2.
Nature ; 626(7999): 626-634, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326614

RESUMO

Adoptive T cell therapies have produced exceptional responses in a subset of patients with cancer. However, therapeutic efficacy can be hindered by poor T cell persistence and function1. In human T cell cancers, evolution of the disease positively selects for mutations that improve fitness of T cells in challenging situations analogous to those faced by therapeutic T cells. Therefore, we reasoned that these mutations could be co-opted to improve T cell therapies. Here we systematically screened the effects of 71 mutations from T cell neoplasms on T cell signalling, cytokine production and in vivo persistence in tumours. We identify a gene fusion, CARD11-PIK3R3, found in a CD4+ cutaneous T cell lymphoma2, that augments CARD11-BCL10-MALT1 complex signalling and anti-tumour efficacy of therapeutic T cells in several immunotherapy-refractory models in an antigen-dependent manner. Underscoring its potential to be deployed safely, CARD11-PIK3R3-expressing cells were followed up to 418 days after T cell transfer in vivo without evidence of malignant transformation. Collectively, our results indicate that exploiting naturally occurring mutations represents a promising approach to explore the extremes of T cell biology and discover how solutions derived from evolution of malignant T cells can improve a broad range of T cell therapies.


Assuntos
Evolução Molecular , Imunoterapia Adotiva , Linfoma Cutâneo de Células T , Mutação , Linfócitos T , Humanos , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/biossíntese , Citocinas/imunologia , Citocinas/metabolismo , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Imunoterapia Adotiva/métodos , Linfoma Cutâneo de Células T/genética , Linfoma Cutâneo de Células T/imunologia , Linfoma Cutâneo de Células T/patologia , Linfoma Cutâneo de Células T/terapia , Fosfatidilinositol 3-Quinases , Transdução de Sinais/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante
3.
J Am Coll Surg ; 238(4): 436-447, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38214445

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cells targeting the B-cell antigen CD19 are standard therapy for relapsed or refractory B-cell lymphoma and leukemia. CAR T cell therapy in solid tumors is limited due to an immunosuppressive tumor microenvironment and a lack of tumor-restricted antigens. We recently engineered an oncolytic virus (CF33) with high solid tumor affinity and specificity to deliver a nonsignaling truncated CD19 antigen (CD19t), allowing targeting by CD19-CAR T cells. Here, we tested this combination against pancreatic cancer. STUDY DESIGN: We engineered CF33 to express a CD19t (CF33-CD19t) target. Flow cytometry and ELISA were performed to quantify CD19t expression, immune activation, and killing by virus and CD19-CAR T cells against various pancreatic tumor cells. Subcutaneous pancreatic human xenograft tumor models were treated with virus, CAR T cells, or virus+CAR T cells. RESULTS: In vitro, CF33-CD19t infection of tumor cells resulted in >90% CD19t cell-surface expression. Coculturing CD19-CAR T cells with infected cells resulted in interleukin-2 and interferon gamma secretion, upregulation of T-cell activation markers, and synergistic cell killing. Combination therapy of virus+CAR T cells caused significant tumor regression (day 13): control (n = 16, 485 ± 20 mm 3 ), virus alone (n = 20, 254 ± 23 mm 3 , p = 0.0001), CAR T cells alone (n = 18, 466 ± 25 mm 3 , p = NS), and virus+CAR T cells (n = 16, 128 ± 14 mm 3 , p < 0.0001 vs control; p = 0.0003 vs virus). CONCLUSIONS: Engineered CF33-CD19t effectively infects and expresses CD19t in pancreatic tumors, triggering cell killing and increased immunogenic response by CD19-CAR T cells. Notably, CF33-CD19t can turn cold immunologic tumors hot, enabling solid tumors to be targetable by agents designed against liquid tumor antigens.


Assuntos
Vírus Oncolíticos , Neoplasias Pancreáticas , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Vírus Oncolíticos/genética , Vírus Oncolíticos/metabolismo , Linfócitos T/metabolismo , Linfócitos T/transplante , Antígenos CD19/metabolismo , Neoplasias Pancreáticas/terapia , Microambiente Tumoral
4.
Front Immunol ; 14: 1219289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600775

RESUMO

Introduction: Chimeric antigen receptor (CAR)T-cell CD19 therapy is an effective treatment for relapsed/refractory B-cell acute lymphoblastic leukemia. It can be associated with life-threatening toxicities which often require PICU admission. Purpose: to describe clinical characteristics, treatment and outcome of these patients. Methods: Prospective observational cohort study conducted in a tertiary pediatric hospital from 2016-2021. Children who received CAR-T admitted to PICU were included. We collected epidemiological, clinical characteristics, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), treatment, length of stay and mortality. Results: CAR T-cells (4-1BB constructs) were infused in 59 patients. Twenty-four (40.7%) required PICU admission, length of stay was 4 days (IQR 3-6). Median age was 8.3 years (range 4-24). Patients admitted to PICU presented higher disease burden before infusion: 24% blasts in bone marrow (IQR 5-72) vs. 0 (0-6.9), p<0.001. No patients with <5% blasts were admitted to PICU. Main reasons for admissions were CRS (n=20, 83.3%) and ICANS (n=3, 12.5%). Fourteen patients (58.3%) required inotropic support, 14(58.3%) respiratory. Sixteen patients (66.6%) received tocilizumab, 10(41.6%) steroids, 6(25.0%) anakinra, and 5(20.8%) siltuximab. Ten patients (41.6%) presented neurotoxicity, six of them severe (ICANS 3-4). Two patients died at PICU (8.3%) because of refractory CRS-hemophagocytic lymphohistyocitosis (carHLH) syndrome. There were no significant differences in relapse rate after CAR-T in patients requiring PICU, it was more frequently CD19 negative (p=0.344). Discussion: PICU admission after CAR-T therapy was mainly due to CRS. Supportive treatment allowed effective management and high survival. Some patients presenting with carHLH, can suffer a fulminant course.


Assuntos
Antígenos CD19 , Síndrome da Liberação de Citocina , Imunoterapia Adotiva , Unidades de Terapia Intensiva , Síndromes Neurotóxicas , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Linfócitos T/transplante , Fatores de Risco , Antígenos CD19/imunologia , Imunoterapia Adotiva/efeitos adversos , Estudos Prospectivos , Admissão do Paciente , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Síndromes Neurotóxicas/epidemiologia , Síndrome da Liberação de Citocina/epidemiologia , Humanos , Masculino , Feminino , Criança , Adolescente
5.
Clin. transl. oncol. (Print) ; 25(8): 2279-2296, aug. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-222408

RESUMO

Chimeric antigen receptor T cells therapy (CAR-T therapy) is a class of ACT therapy. Chimeric antigen receptor (CAR) is an engineered synthetic receptor of CAR-T, which give T cells the ability to recognize tumor antigens in a human leukocyte antigen-independent (HLA-independent) manner and enables them to recognize more extensive target antigens than natural T cell surface receptor (TCR), resulting in tumor destruction. CAR-T is composed of an extracellular single-chain variable fragment (scFv) of antibody, which serves as the targeting moiety, hinge region, transmembrane spacer, and intracellular signaling domain(s). CAR-T has been developing in many generations, which differ according to costimulatory domains. CAR-T therapy has several limitations that reduce its wide availability in immunotherapy which we can summarize in antigen escape that shows either partial or complete loss of target antigen expression, so multiplexing CAR-T cells are promoted to enhance targeting of tumor profiles. In addition, the large diversity in the tumor microenvironment also plays a major role in limiting this kind of treatment. Therefore, engineered CAR-T cells can evoke immunostimulatory signals that rebalance the tumor microenvironment. Using CAR-T therapy in treating the solid tumor is mainly restricted by the difficulty of CAR-T cells infiltrating the tumor site, so local administration was developed to improve the quality of treatment. The most severe toxicity after CAR-T therapy is on-target/on-tumor toxicity, such as cytokine release syndrome (CRS). Another type of toxicity is on-target/off-tumor toxicity which originates from the binding of CAR-T cells to target antigen that has shared expression on normal cells leading to damage in healthy cells and organs. Toxicity management should become a focus of implementation to permit management beyond specialized centers (AU)


Assuntos
Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Linfócitos T/transplante , Proteínas Recombinantes de Fusão/uso terapêutico , Antígenos de Neoplasias/imunologia , Linfócitos T/imunologia , Microambiente Tumoral
6.
Semin Hematol ; 60(1): 10-19, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080705

RESUMO

Hematopoietic stem cell transplantation (HSCT) has been used as a curative standard of care for moderate to severe primary immunodeficiency disorders as well as relapsed hematologic malignancies for over 50 years [1,2]. However, chronic and refractory viral infections remain a leading cause of morbidity and mortality in the immune deficient period following HSCT, where use of available antiviral pharmacotherapies is limited by toxicity and emerging resistance [3]. Adoptive immunotherapy using virus-specific T cells (VSTs) has been explored for over 2 decades [4,5] in patients post-HSCT and has been shown prior phase I-II studies to be safe and effective for treatment or preventions of viral infections including cytomegalovirus, Epstein-Barr virus, BK virus, and adenovirus with minimal toxicity and low risk of graft vs host disease [6-9]. This review summarizes methodologies to generate VSTs the clinical results utilizing VST therapeutics and the challenges and future directions for the field.


Assuntos
Infecções por Vírus Epstein-Barr , Transplante de Células-Tronco Hematopoéticas , Viroses , Humanos , Linfócitos T/transplante , Herpesvirus Humano 4 , Recidiva Local de Neoplasia , Viroses/terapia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos
7.
Bull Cancer ; 110(2S): S108-S115, 2023 Feb.
Artigo em Francês | MEDLINE | ID: mdl-35791974

RESUMO

The role of allogeneic hematopoietic cell transplantation (allo-HCT) after CAR T- treatment cells in hematologic malignancies is currently controversial. Prolonged remissions after several years of follow-up suggest that there is a curative effect of CAR T-cells therapy, whereas allo-HCT was previously considered the only curative treatment in relapse situation. The aim of this harmonization workshop is to detail the existing data in the literature on the feasibility of allo-HCT after CAR T-cells and to propose to consider allograft in selected patients with B-acute lymphoblastic leukemia (B-ALL) and diffuse large B-cell lymphoma (DLBCL). In B-ALL, various intrinsic factors (inherent to the patient, to the disease, to the type of CAR T-cells) and especially various post CAR T-cells criteria (early expansion kinetics, residual disease at D28, early loss of B-cell aplasia) should lead to consider performing allo-HCT before the occurrence of a relapse. In DLBCL, although there are risk factors for relapse at diagnosis and prior to CAR T-cells therapy, response assessed by PET-CT at three months is critical and allo-HCT cannot currently be recommended in cases of complete or partial remission. In any case, if the age is appropriate for allogeneic transplantation, HLA typing should be performed before CAR T-cells treatment in order not to delay the allo-HCT project if needed.


Assuntos
Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Neoplasias Hematológicas/terapia , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Linfócitos T/transplante , Recidiva
9.
Science ; 378(6625): eaba1624, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36520915

RESUMO

Chimeric antigen receptor (CAR) T cells are ineffective against solid tumors with immunosuppressive microenvironments. To overcome suppression, we engineered circuits in which tumor-specific synNotch receptors locally induce production of the cytokine IL-2. These circuits potently enhance CAR T cell infiltration and clearance of immune-excluded tumors, without systemic toxicity. The most effective IL-2 induction circuit acts in an autocrine and T cell receptor (TCR)- or CAR-independent manner, bypassing suppression mechanisms including consumption of IL-2 or inhibition of TCR signaling. These engineered cells establish a foothold in the target tumors, with synthetic Notch-induced IL-2 production enabling initiation of CAR-mediated T cell expansion and cell killing. Thus, it is possible to reconstitute synthetic T cell circuits that activate the outputs ultimately required for an antitumor response, but in a manner that evades key points of tumor suppression.


Assuntos
Terapia de Imunossupressão , Imunoterapia Adotiva , Interleucina-2 , Neoplasias , Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Imunoterapia Adotiva/métodos , Interleucina-2/genética , Interleucina-2/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Linfócitos T/transplante , Microambiente Tumoral , Animais , Camundongos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Engenharia Celular , Receptores Notch/metabolismo , Terapia de Imunossupressão/métodos
10.
Science ; 378(6625): 1227-1234, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36520914

RESUMO

Synthetic gene circuits that precisely control human cell function could expand the capabilities of gene- and cell-based therapies. However, platforms for developing circuits in primary human cells that drive robust functional changes in vivo and have compositions suitable for clinical use are lacking. Here, we developed synthetic zinc finger transcription regulators (synZiFTRs), which are compact and based largely on human-derived proteins. As a proof of principle, we engineered gene switches and circuits that allow precise, user-defined control over therapeutically relevant genes in primary T cells using orthogonal, US Food and Drug Administration-approved small-molecule inducers. Our circuits can instruct T cells to sequentially activate multiple cellular programs such as proliferation and antitumor activity to drive synergistic therapeutic responses. This platform should accelerate the development and clinical translation of synthetic gene circuits in diverse human cell types and contexts.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Redes Reguladoras de Genes , Genes Sintéticos , Linfócitos T , Fatores de Transcrição , Dedos de Zinco , Humanos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Biologia Sintética/métodos , Linfócitos T/metabolismo , Linfócitos T/transplante , Engenharia Genética
12.
Science ; 378(6622): 853-858, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36423279

RESUMO

Immune cells are being engineered to recognize and respond to disease states, acting as a "living drug" when transferred into patients. Therapies based on engineered immune cells are now a clinical reality, with multiple engineered T cell therapies approved for treatment of hematologic malignancies. Ongoing preclinical and clinical studies are testing diverse strategies to modify the fate and function of immune cells for applications in cancer, infectious disease, and beyond. Here, we discuss current progress in treating human disease with immune cell therapeutics, emerging strategies for immune cell engineering, and challenges facing the field, with a particular emphasis on the treatment of cancer, where the most effort has been applied to date.


Assuntos
Transferência Adotiva , Engenharia Celular , Neoplasias Hematológicas , Linfócitos T , Humanos , Neoplasias Hematológicas/terapia , Linfócitos T/imunologia , Linfócitos T/transplante , Transferência Adotiva/métodos
13.
Science ; 378(6622): 848-852, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36423287

RESUMO

A new era of biological engineering is emerging in which living cells are used as building blocks to address therapeutic challenges. These efforts are distinct from traditional molecular engineering-their focus is not on optimizing individual genes and proteins as therapeutics, but rather on using molecular components as modules to reprogram how cells make decisions and communicate to achieve higher-order physiological functions in vivo. This cell-centric approach is enabled by a growing tool kit of components that can synthetically control core cell-level functional outputs, such as where in the body a cell should go, what other cells it should interact with, and what messages it should transmit or receive. The power of cell engineering has been clinically validated by the development of immune cells designed to kill cancer. This same tool kit for rewiring cell connectivity is beginning to be used to engineer cell therapies for a host of other diseases and to program the self-organization of tissues and organs. By forcing the conceptual distillation of complex biological functions into a finite set of instructions that operate at the cell level, these efforts also shed light on the fundamental hierarchical logic that links molecular components to higher-order physiological function.


Assuntos
Engenharia Celular , Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia Adotiva , Neoplasias , Linfócitos T , Humanos , Neoplasias/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Imunoterapia Adotiva/métodos , Linfócitos T/imunologia , Linfócitos T/transplante
14.
Cells ; 11(14)2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35883606

RESUMO

Immunotherapy is an attractive therapeutic strategy for the treatment of osteosarcoma (OS). The unique features of γδ T cells have made them popular for cancer immunotherapy. Here, we expanded γδ T cells using human peripheral blood mononuclear cells (PBMCs) and investigated their therapeutic potential against OS cells. PBMCs from healthy donors were cultured for 10 days with CON medium (unstimulated control); EX media, CON with recombinant human interleukin-2 (rhIL-2) and zoledronate; and EX28 media, CON with rhIL-2, zoledronate, and CD3/CD28 activator. The expanded γδ T cells were isolated by magnetic cell separation or fluorescence-activated cell sorting, cultured with two OS cell lines (KHOS/NP and MG-63) at various cell ratios with or without doxorubicin or ifosfamide, and analyzed for cytotoxicity and cytokine secretion. The number of CD3+γδTCR+Vγ9+ triple-positive γδ T cells and concentrations of IFN-γ and TNF-α were highest in the rhIL-2 (100 IU) and zoledronate (1 µM) supplemented culture conditions. The CD3/CD28 agonist did not show any additional effects on γδ T cell expansion. The expanded γδ T cells exhibited potent in vitro cytotoxicity against OS in a ratio- and time-dependent manner. The γδ T cells may enhance the effect of chemotherapeutic agents against OS and may be a new treatment strategy, including chemo-immunotherapy, for OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Receptores de Antígenos de Linfócitos T gama-delta , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/terapia , Antígenos CD28/metabolismo , Difosfonatos/metabolismo , Difosfonatos/farmacologia , Humanos , Imidazóis/metabolismo , Imidazóis/farmacologia , Leucócitos Mononucleares/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/terapia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/uso terapêutico , Linfócitos T/metabolismo , Linfócitos T/transplante , Ácido Zoledrônico/farmacologia
15.
Sci Rep ; 12(1): 1911, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115587

RESUMO

Many critical advances in research utilize techniques that combine high-resolution with high-content characterization at the single cell level. We introduce the MICS (MACSima Imaging Cyclic Staining) technology, which enables the immunofluorescent imaging of hundreds of protein targets across a single specimen at subcellular resolution. MICS is based on cycles of staining, imaging, and erasure, using photobleaching of fluorescent labels of recombinant antibodies (REAfinity Antibodies), or release of antibodies (REAlease Antibodies) or their labels (REAdye_lease Antibodies). Multimarker analysis can identify potential targets for immune therapy against solid tumors. With MICS we analysed human glioblastoma, ovarian and pancreatic carcinoma, and 16 healthy tissues, identifying the pair EPCAM/THY1 as a potential target for chimeric antigen receptor (CAR) T cell therapy for ovarian carcinoma. Using an Adapter CAR T cell approach, we show selective killing of cells only if both markers are expressed. MICS represents a new high-content microscopy methodology widely applicable for personalized medicine.


Assuntos
Biomarcadores Tumorais/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Imunofluorescência , Imunoterapia Adotiva , Neoplasias/metabolismo , Neoplasias/terapia , Fotodegradação , Análise de Célula Única , Antígenos Thy-1/metabolismo , Morte Celular , Citotoxicidade Imunológica , Ensaios de Triagem em Larga Escala , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante
16.
Sci Rep ; 12(1): 2830, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181722

RESUMO

CD19 CAR T-cell immunotherapy is a breakthrough treatment for B cell malignancies, but relapse and lack of response remain a challenge. The bone marrow microenvironment is a key factor in therapy resistance, however, little research has been reported concerning the relationship between transcriptomic profile of bone marrow prior to lymphodepleting preconditioning and clinical response following CD19 CAR T-cell therapy. Here, we applied comprehensive bioinformatic methods (PCA, GO, GSEA, GSVA, PAM-tools) to identify clinical CD19 CAR T-cell remission-related genomic signatures. In patients achieving a complete response (CR) transcriptomic profiles of bone marrow prior to lymphodepletion showed genes mainly involved in T cell activation. The bone marrow of CR patients also showed a higher activity in early T cell function, chemokine, and interleukin signaling pathways. However, non-responding patients showed higher activity in cell cycle checkpoint pathways. In addition, a 14-gene signature was identified as a remission-marker. Our study indicated the indexes of the bone marrow microenvironment have a close relationship with clinical remission. Enhancing T cell activation pathways (chemokine, interleukin, etc.) in the bone marrow before CAR T-cell infusion may create a pro-inflammatory environment which improves the efficacy of CAR T-cell therapy.


Assuntos
Antígenos CD19/imunologia , Células da Medula Óssea/imunologia , Imunoterapia Adotiva , Leucemia Linfocítica Crônica de Células B/terapia , Adulto , Antígenos CD19/genética , Antígenos CD19/uso terapêutico , Linfócitos B/imunologia , Linfócitos B/fisiologia , Transplante de Medula Óssea , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/imunologia , Feminino , Humanos , Imunoterapia/métodos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/terapia , Linfócitos T/imunologia , Linfócitos T/transplante , Transcriptoma/genética , Resultado do Tratamento , Microambiente Tumoral/imunologia
17.
J Mol Biol ; 434(8): 167513, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35218770

RESUMO

We have previously developed a universal chimeric antigen receptor (CAR), which recognizes dinitrophenyl (DNP) and can redirect T and NK cells to target cancer and HIV antigens using DNP-conjugated antibodies as adaptor molecules. However, the DNP-antibody conjugates are generated by random modification, which may not be optimal for this modular system. Here, we report the development of enhanced adaptor molecules by site-specific DNP modification. We use the genetic code expansion technology to generate single-chain fragment variable (scFv) antibodies with site-specific DNP. We compare four anti-CD19 scFv mutants and find that the one with DNP at the flexible peptide linker between VL and VH is the most effective in redirecting anti-DNP CAR-T cells against CD19+ cells. The other three mutants are ineffective in doing so due to reduced DNP exposure or abrogated CD19 binding. We also use the anti-CD22 scFv as another model adaptor molecule and again find that the peptide linker is ideal for DNP derivatization. Our approach can potentially be used to design enhanced adaptor molecules to redirect the DNP-mediated universal CAR against other tumor antigens.


Assuntos
Dinitrobenzenos , Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Antígenos CD19/genética , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Dinitrobenzenos/química , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Anticorpos de Cadeia Única/genética , Linfócitos T/imunologia , Linfócitos T/transplante
18.
FEBS Lett ; 596(4): 403-416, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34978080

RESUMO

Chimeric antigen receptor (CAR)-T-cell therapy is a promising anticancer treatment that exploits the host's immune system to fight cancer. CAR-T cell therapy relies on immune cells being modified to express an artificial receptor targeting cancer-specific markers, and infused into the patients where they will recognize and eliminate the tumour. Although CAR-T cell therapy has produced encouraging outcomes in patients with haematologic malignancies, solid tumours remain challenging to treat, mainly due to the lack of cancer-specific molecular targets and the hostile, often immunosuppressive, tumour microenvironment. CAR-T cell therapy also depends on the quality of the injected product, which is closely connected to CAR design. Here, we explain the technology of CAR-Ts, focusing on the composition of CARs, their application, and limitations in cancer therapy, as well as on the current strategies to overcome the challenges encountered. We also address potential future targets to overcome the flaws of CAR-T cell technology in the treatment of cancer, emphasizing glycan antigens, the aberrant forms of which attain high tumour-specific expression, as promising targets for CAR-T cell therapy.


Assuntos
Antígenos de Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Polissacarídeos/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Antígenos de Neoplasias/genética , Sítios de Ligação , Sequência de Carboidratos , Engenharia Genética/métodos , Glicosilação , Humanos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Polissacarídeos/química , Ligação Proteica , Domínios Proteicos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/genética , Linfócitos T/citologia , Linfócitos T/transplante , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
19.
Nat Commun ; 13(1): 217, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017485

RESUMO

B cell-activating factor (BAFF) binds the three receptors BAFF-R, BCMA, and TACI, predominantly expressed on mature B cells. Almost all B cell cancers are reported to express at least one of these receptors. Here we develop a BAFF ligand-based chimeric antigen receptor (CAR) and generate BAFF CAR-T cells using a non-viral gene delivery method. We show that BAFF CAR-T cells bind specifically to each of the three BAFF receptors and are effective at killing multiple B cell cancers, including mantle cell lymphoma (MCL), multiple myeloma (MM), and acute lymphoblastic leukemia (ALL), in vitro and in vivo using different xenograft models. Co-culture of BAFF CAR-T cells with these tumor cells results in induction of activation marker CD69, degranulation marker CD107a, and multiple proinflammatory cytokines. In summary, we report a ligand-based BAFF CAR-T capable of binding three different receptors, minimizing the potential for antigen escape in the treatment of B cell cancers.


Assuntos
Fator Ativador de Células B/genética , Receptor do Fator Ativador de Células B/genética , Antígeno de Maturação de Linfócitos B/genética , Linfoma de Célula do Manto/terapia , Mieloma Múltiplo/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Fator Ativador de Células B/imunologia , Receptor do Fator Ativador de Células B/imunologia , Antígeno de Maturação de Linfócitos B/imunologia , Linfócitos B/imunologia , Linfócitos B/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Citotoxicidade Imunológica , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Ativação Linfocitária , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/imunologia , Linfoma de Célula do Manto/patologia , Proteína 1 de Membrana Associada ao Lisossomo/genética , Proteína 1 de Membrana Associada ao Lisossomo/imunologia , Masculino , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Ligação Proteica , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/transplante , Proteína Transmembrana Ativadora e Interagente do CAML/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Sci Rep ; 12(1): 378, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013456

RESUMO

The tumor burden (TB) is significantly related to the severity of cytokine release syndrome (CRS) caused by CAR-T cells, but its correlation with therapeutic efficacy has not been systematically studied. This study focused on the effects of the TB level on both the safety and efficacy of ssCART-19 as a treatment for r/r B-ALL. Taking the 5% tumor burden as the boundary, the study participants were divided into 2 groups, high and low tumor burden groups. Under this grouping strategy, the impacts of differential r/r B-ALL TBs on the clinical therapeutic efficacy (CR rate and long-term survival) and safety profiles after ssCART-19 cell treatment were analysed. 78 patients were reported in this study. The differential B-ALL TBs significantly affected the complete remission (CR) rates of patients treated with ssCART-19, with rates of 93.94% and 75.56% in the low and high TB groups, respectively (P = 0.0358). The effects of TBs on long-term therapeutic efficacy were further studied based on event-free survival (EFS) and overall survival (OS) profiles; both the OS and EFS of the low TB group were better than those of the high TB group, but the differences were not statistically significant. Importantly, the time points of TB measurement did not significantly affect the OS and EFS profiles regardless of whether the TBs were measured before or after fludarabine-cyclophosphamide (FC) preconditional chemotherapy. On the other hand, the severity of CRS was significantly correlated with the TB level (P = 0.0080), and the incidence of sCRS was significantly related to the TB level (the sCRS incidence increased as the TB level increased, P = 0.0224). Unexpectedly, the ssCART-19 cell expansion peaks were not significantly different (P = 0.2951) between the study groups. Patients with a low r/r B-ALL TB yield more net benefits from CAR-T treatment than those with a high TB in terms of safety and CR rate. These findings are critical and valuable for determining the optimal CAR-T cell treatment window for r/r B-ALL patients and will further the development of comprehensive and reasonable CAR-T cell treatment plans for r/r B-ALL patients with differential TBs.Trial registration: ClinicalTrials.gov identifier, NCT03919240.


Assuntos
Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/transplante , Adolescente , Adulto , Idoso , Criança , China , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/imunologia , Feminino , Humanos , Imunoterapia Adotiva/efeitos adversos , Masculino , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Intervalo Livre de Progressão , Receptores de Antígenos Quiméricos/genética , Indução de Remissão , Fatores de Risco , Linfócitos T/imunologia , Fatores de Tempo , Carga Tumoral , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...